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A hierarchical framework has been developed for damage characterization, detection and
quantification in composite laminates. The procedure includes accurate analysis, optimal sensor
placement algorithm and advanced signal processing technique. A refined global/local laminate
analysis technique, including fully coupled electro-mechanical constitutive relations, has been
used for predicting the dynamic response of composite laminates in the presence of
delaminations. The methodology accounts for the nonlinear “breathing phenomenon” or
sublaminate contacts during vibration. Damage identification is conducted using elastic waves
and miniaturized piezoelectric sensors. A new design methodology for optimal sensor placement
has been developed based on the requirements of sensing certainty and sensor density. An
analytical method has been developed to model the material attenuation of the composite
medium to formulate a relationship between sensing region, sensor observation angle, fiber
orientation, and damage size. A signal processing technique based on the matching pursuit
decomposition has been further extended to extract newly generated spectral components due to
the nonlinearity in the received signal. Time-of-flight analysis has been performed on
decomposed components of transient datasets to quantify defect. An advanced machine-leaming
based classifier, known as Support Vector Machines, has also been developed to detect and
classify the signature characteristics due to the presence of various types of defects like

delaminations, drilled holes, notches, saw-cut, etc., such that the state of the structure can be




assessed. Experiments have been conducted using a variety of nondestructive evaluation (NDE)

techniques, including pulse echo thermography, to validate the developed methodologies.




Objectives

A comprehensive research on characterization, detection and cstimation of seeded

dclaminations in composites hus been conducted. A hicrarchical sensor integrated framework

has been developed, combining simulation, wave propagation bascd dctection, signal processing

and classification techniques. Following are the principle objcctives of this research.

1.

Wave propagation in heterogeneous media and optimal sensor placement based on the
concept of sensing region and detection crileriu, A two-dimensional désign methodology
associated with optimal placement of sensor sets has hcen developed based on the
characterization of sensor sepsing region and performance. Convergence of sensing regions
with the required level of inspection accuracy leads to the certainily region of detectability,
implying that perturbations caused by damage in that rcgion with seventy greater than the
threshold value can be detected.
Hierarchical Inspection Method, A “local cncrgy bascd” inspection method has been
devclopd taking into account both the *local” and “global” effects on the structural response
of composite structures.
Material attenuation and its effect on damage detection and sensor placement. A model for
predicting the influcnce of thc combined cffects of fiber angle and observation angle on
attenuation coefficient of composite Jaminate has been developed. The goal is to achieve a
thorough understanding on the relationship between sensing region, observation angle, fiber
orientation, and damage size.

Time-frequency based damage detection techniques. A methodology for localized analysis of
waveforms obtained from damaged structures has been developed using the Matching Pursuit
Decomposition (MPD) technique and time-frequency representations (TFRs) with a broader
view of damage quantification.

Signal processing techniques. Suitable signal processing techniques, based on the MPD, has

been developed to investigate the vibration attributes of delaminations in composites, The




present work concentrates on the applicability of the MPD technique to extract some [eature
components of “multiple-harmonic” vibration of elastic bodics.

6. Damage classification. An automated nﬁcthod for classifying sensor signals, collected from
different types of damaged coupons, has becn developed to enable the detection and
diagnosis of various forms of damagc on composite structures using Support Vector
Machines (SVMs), which arc an advanced form of classification method from the field of
machine leaming.

Summary of Research Efforts
A comprehensive framework has been developed including damage characterization in
composites, advanced signal processing for damage detection, and optimal sensor placement. A
methodology has been developed to achieve optimal sensor placement and convergent
descriptions of possible damages in the presence of noise through charactenzation of sensor/host
structure coupling, sensing capability and sensor sensitivity. A local energy bused mspection
mcthod has also been developed by formulating a damage indicator based on local energy
perturbations due to possible presence of damage. Through the integration of the developed
sensor nctwork and identification technique, damagé can be detected through local energy effects
of individual sensors to that of the overall responses of the distributed sensors. The present
procedurc also incorporates the effecls of (he iransducer-structure bonding and the
characterization of the sensors sensing region in the prﬁesenc|e of system noise (both structural and

. . . . .
clectronic). The optimal placement of the transducers is| subjected to the minimum overlap

criteria such that the sensing regions of the sensor set provide sufficient spatial coverage, and
rclevant damage information leads to convergence even in the presence of noise, based on the
state of excitation and concurrent signal-to-noisc ratio. Damage identification has been

conducted using elustic waves and miniaturized piezoelectric sensors. A refined global/local




laminate analysis technique has been used for the characterization of damage in composites. The
cfficicnt and accurate structural analysis uses both higher order and layerwise displacement field
formulations and fully coupled electro-mechanical constitutive relations. Results indicate that the
presence of delamination in composites significantly affects the energy contribution of individual
sensors, depending on their relative positions with respect to damage zones. Characterization
studies have been conducted to obtain the sensor parametcrs which arc then used in the
identification procedure to detect structural damage. A fundamecntal investigation nlo
fibcr/matrix wavce propagation and scattering has been conducted. An unalytical method has been
developed to model the material attenuation of the composite medium to formulate a relationship
between sensing region, sensor observation uangle, fiber orentation, and damage size. A
hierarchical approach has bcen adopted to improve the monitoring technique for further
quantification of delaminations patterns. In the current effort, a Matching Pursuit Decomposition
(MPD) algorithm has been developed for detection and locahzation of seeded delamination in
composite structures. A characterization of sensor signals has been conducled to interpret the
mfluence of delamination in compositc platcs using thc MPD tcchnique. This has been
accomplishcd by decomposing the signal in terms of wave-based di#:tionary elements and finally
utilizing the timc-of-flight information of these individual decomposed components of transient
datasets to determine the location and sizc of the dclamination. The developed signal processing
techniquc bascd on the MPD bas been further extended to extract newly penerated spectral
components duc to the nonlinearity in the received signal. An advanced machine-learning based
classifier, known as Support Vector Machines, has also been developed to detect and classify the
signature characteristics duc to the presence of various types of defects like delaminations, drilled
holes, notchcs, saw-cut etc. in composite structures so that the status of the structure can be

ascertained. Expenments huve been conducted using a varicty of nondcstructive cvaluation
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(NDE) tcchniques, including pulse echo technique, thermography, to visualize the presence of
damage.

Accomplishments

1. Optimal Transducer Placement Technique

A design methodology [or optimal sensor sets is developed based on the characterization
of sensors’ sensing regions and performance. Convergence of sensing regions with the required
level of inspection accuracy leads o the certainty region of detectability, implying that
perturbations causcd by thce damage in the corresponding region with severity greater than the
threshold valuc can be detected. To quantify such sensing regions, an expermenial
characterization is first conducted and then the scnsing rcgion is determmmed using the
corresponding scnsor response. For a surface mounted sensor-actuator pair, the transfer function
ccan be expressed as follows.
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where V4(t) and V(1) arc the cxcitation and the sensing response, respectively and Tem and T arc

the actuator and sensor transfcr functions, respectively. The paramcter off) is the attcnuation

coelficient at excitation frequency (f) and Ryg is the distance between the actuator and the sensor.

When PZT-1 ucts as an actuator (Fig. 1), the cnergy ratio of the scnsor signals over the time

intcrval can be related as follows,
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where T E:‘pz'/'l & N};'/sgz - represent the energy of Sensor-1 signal and Sensor-2 signal,
n= net CRrzr

respectively. I[f PZT-2 acts as an actuator, Rys; (R4s7) being the distance between PZT-2 and

Sensor-1 (Sensor-2), the signal attenuation coefficient 1s then given by
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Fig. 1 Expcrimental sctup for sensor characterization
The detection performance of the sensor is evaluated based on the generalized likelihood
ratio test (GLRT), In GLRT process, the maximum likelihood estimatcs (MLE) of the unknown
paramcters are first determined and thercafter the maximum likelihood ratio is calculated

corresponding to the MLE of the parameters in the test statistics (L(x)). In general, the GLRT
decides I, when,
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where 7 is the threshold paramcter. The significance of Eq. (4) is that the developed tcst

statistics maximizes the likelihood ratio over the estimated paramcter ¢ and hypothesis is

assumed to be true only when the likelihood ratio is greater than the threshold y . Assuming that




the noise variance o’and f, is known, the present analysis boils down to a narrowband

detection process that decides on the presence of the sinusoid with amplitude and phasc as

unknown parameters. Hence Eq. (4) can be rewritten as,
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where 4 and ;5 are the MLE of the amplitude and phase. Following some mathematical

manipulations, the decision criteria of the madificd test statistics (7(x)) can be expressed as,
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where ¥, is the ncw threshoid value, N denoles the total number of observed data points and 7 1s
imaginary unit, Bq. (6) states that a signal can be present if the peak value of the periodogram
cxceeds a specific threshold, evaluated at the frequency of excitation ( f,). The threshold value
physically means the power corresponding to certain frequency, for a given sensor signal ( x(n)).
The detection performance of the sensor is evalualed bascd on the generalized likelihood ratio

test (GLRT) approach, and can be expressed as follows.

VZ
P =exr — =t vl
fa r{ 0_2) ( )

where £r and ¢® denote the probability of false alarm and knmown variance for a specific

probability value obtaincd from the noise data, respectively..




1.1 Effective Sensitivity Region
It is worthwhile mentioning that the perturbation caused by the presence of the defects in
a certain region that results in an effect with severity greater than the specified threshold valuc, at
the receiver end, is detectable. Such perturbation is then characterized by the following relation,
Vxy exp(—- atnys)= Vs | (8)
and to satisfy the detection criteria, the following must hold good.

Ve 2V (9)

th
where V,, is the intensity of the source of the perturbation at any surface point (x, y), ¥, is the
intensity at the receiver node, V,, 1s the threshold value, und Ry, is the ubsolute distance between

the point (x, ) and the sensor node. The scnsing region can be further derived using Eq. (8) and
Eq. (9).

The sensing region is detined as the distance corresponding to the generated perturbation
that would result in a sensor response greater than or equal to the threshold voltage. The
distribution of such possible perturbed sources is shown in Fig. 2. Bascd on the analysis of the
experimental data, the sensing radius (R;) is calculated to be 0.052 m (Fig. 3), with D=0.1 m,
Raa=0.05 m, Ry2=0.15 m (Fig. 2) and a threshold voltage of 1.1364x10? v for a P of 10, The
optimal placement of sensors is then determined by satisfying the minimum overlap criteria (Fig.
4), for the specified platc structure as shown in Fig. 5. The surface area is divided into small grids
and the shadcd region (indicated 17, Fig. 5) shows the detectable region, A simple geometric

rclation can find the centers of the circles forming an cquilatcral triangle with a spacing of 43 R

and the angles (%*5+7 ) equal to /3
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Fig. 5: Optimal sensor placement for a square
plalc,

The developed "local energy based inspection” mecthod uses local quantification of the
energy. The damage indicator, based on the change in cnergy contribution (A) as in Eq. (12),
takes into account the local physical cffects (Eq. (10)), compared to the overall performance (Eq.
(11)) of all the sensors, spatially distributed over the entire structure. Here Eyy (Eip ) and Euvp)

(Euwvgmy) Tepresents the cnorgy of the i* sensor signal and average encrgy over all the sensors for

(10)
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Results are presented for a [0%90°)4s Graphite/Epoxy laminated plate with surface
mounted actuator and sensors. The length of the square plate 18 0.3 m, and the total thickness
h=2.81x10" m. Thc platc is clamped at two edges and the other edges are kept [ree. The
locations of thc transduccrs arc shown in Fig, 6, The same transducers are used as
actuator/sensor. The damages are a pair of seeded delamination with a dimension of 0.04x0.045
m at the 4™ or 7" ply interfaces (with respect to the mid plane) and located at a distance of 0.02

m from the edges (Fig. 6).

Ry I Clamped edyge

— ——.—-—~ St [ h A N : .Dclaminaﬁon

I~ T . Trangducer

Fig. 6: Nlustration of surface mountcd transducers and delaminations.
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The first sct of results (Figs. 7 and 8) show that the local cffcets of Sensors 1 and 9 are
significantly abovc the global energy contribution [Egmilay=1.1532 Egunaln- 1.0333], Such
cffccts arc more dominant when the positions of Sensors 7 and 8 are relatively closer to the
damaged prone region and are more pronounced for delaminations located closer to the mid-
plane. When the delaminations are closer to the free surface of the platc (such as 7™ ply
delamination), the stiffncss of the dclaminated plate is comparable to the healthy plate. Therefore

the difference in strains between a healthy and delaminated plate is small.
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Fig. 9: Change in energy contributions (4™ ply Fig. 10: Chunge in energy contributions (7™ ply
delamination). delamination).

The second set of resvlts (Figs. 9 and 10) present the variation of energy contributions

with respect to individual scnsors. This change is visible for all the sensors around the

delaminatcd rcgion. Hence it 15 possible to locate the damage prone region based on the global

coordinates of sensors (sensor IDs).
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2. Attenuation Behavior/Elastic Wave Propagation

To estimate energy scattering of wave propagation in fiber-reinforced composite
laminates, a planc time-harmonic elastic wave is considered. For a given frequency @, the plane

wave propagating in the r direction can be expressed as (Fig. 11),

Y r' 3
I
—_—
/ ’
: ® -
) R
Incident wave: u, -
Glalxea®rysn®) |/o Fiber scattering X

Figure 11 Tustration of wave scattering duc to a fiber,

i( o))
Uk (@)e ar, cl®) (13)

. (r,w)= Uk (m)ei(Kr —on

where u % is the displacement componcnt in the k dircction, and U k(a)) is the corresponding

amplitude factor, typically dependent on the opcerating frequency and the boundary coundition,
The quantity X 1s the complex wave number, o the attenvation factor (a(@) = 0), and c(w) is

the effecive wave velocity. Notc that / is the imaginary unit.

The presence of the fiber-matrix intcrface in the volume element gives rise to wave
scattering which diminishes the intensity of the incident wave, which can be expressed in the

following formn,

{1ty m) = (1 (r.oNe” & (14)
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where (/(r,®)) denotes the incident wave intensity, and <]0(r,co)> is the corresponding

amplitude which is proportional to the squarc of the displacement amplitude per unit area.

Therefore, the variation of the wave intensity in the r direction is,

6(1 (r, (0))

e = =2a(I(r, ®)) (15)

To quantify wave scattering in fiber-reinforced composites, a representativc control volume
element has been defined in Fig. 13, Considering the conservation of cnecrgy in the control

volume element, the total energy dissipated by the scattering wave can be expressed as,

<PISC> =(I(r. ©))S - [(I(r, o))+ &(gr’f”—& dr}S (16)

where § is the surfacc of the control volume clement, and <Pfc> rcpresents the total time

averaged energy of the scattered waves induced by the fiber-matrix interfacial interaction in the
control volume. Notc that a dilute interaction is assumed, which implies that only primary
scattcring is considered. It is importanit to mention that in most practical problems, diluie

solutions are considered adequate.

2.1 Single Fiber Scattering Formulation

It has been shown that the piezoelectric shear transducers will maimly excite shear waves.
Therefore, an anti-planc shcar wave from a single fiber is considered. The total energy flow per
unit arca for the scattered field is the time average of the effective flux over any surface assigned
to be the area enclosing the cylinder (fiber) of unit length (Fig. 12). Then the scattered cnergy for

a single fiber of unit length can be expressed as




.
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S
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Control volume
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Fig. 12. Single fiber cross Fig. 13, Fiber-teinforced composite and representative volume
sechomn, element.
4 sc
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where %€ is the scattered wave, 4, be the shear modulus of the matrix, » r the fiber radius and

<P;C>UA is the energy flow per unit area of a single fiber (Fig. 12) for the scattered field. Note

that this quantity describes the cnergy scattered in all directions and thus the amount of the

energy lost by the incident wavc at the cost of it’s intcraction with the unit arca of the fiber.

Therefore the total scattered energy (<P}C>), for a single fiber with the effective length

(L of ), can be expressed as,

)l o

Let 0'0( w) be the total scattcring cross-scction for perfectly bonded fiber. Then ao(w) can be

dcfined as the total scattered energy divided by the incident wave intensity. That is,
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(19)

(o) =

2.2 Multiple-Fiber Scattering Formulation

Since the mutual interaction or multiple effects among individual fibers have been
neglected in the present study, the individual fibers can be regarded as independent of each

other, In the control volume element it is assumcd that all identical fibers are aligned in the

>

matrix such that there are N ef fibers per unit area in the plane perpendicular to the fiber axis

and hence the total scattering energy,

(m) = @ﬁ“<P }C>UA Lopr 20)

When the wave travcls along thc O-X1 dircction that makes an anglc # with the O-X, the

respective volume element is exactly identical with that shown in Fig. 13. For convenience each

variable is identified with a suffix ‘8" for this specific case. Hence the effective fiber length and

the attenuation coefficient (a’%) computed respectively for this certain angle as,

Leff =L cos(f —«) 21
. N . PSC
ag, =-;- ;ff L < Z; )>UA cos(f - ) (22)
c B

where L is the distancc between the two measuring points (the distance between the sensors in

the present case), « denotes the angle of ply orientation, and V. is thc control volume. This

15




relation shows that, the effective attenuation cocfficient is influenced by the cumulative effect of

the resultant scattered energy from all laycrs and the diffcrent angle (3 — o).

To obtain the loss due to the wave scattering for composite laminates, by considering a

total k layers, the total scattered energy can be cxpressed as follows,

(23)

k
where <P}’"> is the energy scattering of the layer k, and can be obtained from Egs. (20) and

(21),

(o) =22 £ (77 () s

It is important to mention that the current approach to sum over the scattering encrgy over
individual layers would be entircly adequatc beeause the final expression is determined using
sample equations which stem from energy considerations. Eq. (12), can be rewritten in terms of

individual layer contribution,

<P/’" >UA.) <P;‘ >UA.2

(Pf">k =L <P/’C>,M’k Wcos(ﬂ“al) + (Pj‘">u” cos(B—a,) [+K K +cos(f~a, )

/
(25)

To simplify the analysis, the energy flow in a control volume element with three layers has been

considered (Fig. 14). Considering that no energy can be created or destroyed within the control

16




volume, the input cnergy of the j“‘ luyer must be cqual to the input energy of the (j-+1 Y layer plus

the energy carmied away by the scattered wave in the )™ layer. This can be expresscd as,

[ s,
[ @y | o)
g 80,

[ @Pwer | o),

B S(I> J+2

l (+2)" layer ] o-_(;‘l-Z

-
Sa350
“va,

Fig.14. Layerwise energy flow in Fioure 15. Exneri . e
JE tal t ale g .
composite laminates. Figure 15 Experimental setup and plate geometry

Jo_inNJ+1ao_ scj
s-7s-(o) )
(26)

Combination of Egs. (26) and (19), would result in,

(P, 1
—t=C. . . = 27
(7, o

0 1
7| ot
J

Thercforc Eq. (25), can be rewritten for the k layers as follows,

<P}c>k = Lg <Pj§" >UA,k {( Cl.,k cos(/3 -q )) + (C2,k cos(ﬁ —a, )J +KK + cos( -ay, )}

(28)
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It is possible to estimate these paramcters (C.'1 % C2 PIEE .) through numenical calculations

for a specific composite with somc known parameters like elastic constant, fiber radius and

mncident wave.
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Fig. 16. Normalized attenuation with varying obscrvation angle (-34/0/34 deg.) (a) 0/0 (b) 0/90 stacking
sequence (Comparison of simulation (+), experimental (*) and theoretical (A) resuits for healthy case )
The dependency of the normalized attenuation coefticient on observation angle (6) is shown in
Fig.16a-16b. It is seen from Fig.16a-16b that the variation of the normalized attenuation is almost
symmeirical about f = 0 deg. Similar paiterns are observed for both 0/0 and 0/90 stacking
sequences. For normal incidence, the pattern shows that the maximum value of the attenuation
coefficient always occurs at 8= 0 for a given stacking sequence. However for a fixed obscrvation
angle, the value of the normalized attenuation coefficient is a maximum for a 0/90 stacking
sequence. In this context, it is important to note that Fig.16a-16b has some relevance to wave
bused quantitative nondestructive evaluation for optimally locuting the sensor in order to
efficiently intercept the scattered signal.
3. Time Frequency Based Damage Detection and Quantification

A distinct feature of nonlinear systems is the frequency component from the generated

harmonic response that is different from the harmonic excitation frequency. When a localized
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damage is induced in the structure, these distinct feature components are sénsed by the
neighboring transducers. Extracting the featured components with suitable signal processing
techniques is a major task in SHM. In this research, the Matching Pursuit Decomposition (MPD)
is uscd to characterize the influencc of delamination on the structural response.
3.1 Matching Pursuit Decomposition

The MPD is an iterative nonlinear algorithm that decomposes any signal into a linear
expansion of waveforms that belong to a redundant dictionary. The signal must be expunded into
waveforms whose TFR properties are adapted to its local structures. Thus, a modified version of
the MPD uses a dictionary that is formed using TFR atoms matched to the analysis signal. Tf d(2)
is the basic TFR atom, « is the dilation or scaling factor, B is the translation factor and x is the
modulation factor, then n” dictionary element d,(t), n=/,...,N, is formed by changing «, S, x

from the following as:

d. (t)= J—;_—d(i;ijef (29)

where n 1s the total pumber of dictionary elements. The redundant dictionary covers the entire I'F
planc, spanned by these time-scaled, time-shifled and frequency-shifted atoms, The objective of
the MPD is to decompose a signal x(r) as a linear expansion of waveforms, sclected from the
dictionary, that best match the TF structure of the signal. This decomposition is done by

successive approximations of x(t)with orthogonal projections on dictionary elements and is thus
itcrative in nature. The signal x(¢)is frst decomposed asx(t) = a'd. (1)+ #' (1), where #(1) is the
rcsidual signal after approximating thc signal x(¢) with the dictionary element o (¢),

<f‘,d;:m>= [x(2)d,, (t)dt is the projection of x(t) onto the dictionary element d., (f)and bm
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represents the best matched dictionary element. This dictionary clement corresponds to the signal

componcnt with the highest energy. Specifically, Kx, d;, >I = m'?xl(x, d, )| . After the k" iteration,

r ()= a*df

bm

)+ (), a* =(r*,df,) (30)
where d,,(¢)is the chosen dictionary element that best matches the residual #*(¢) which is given

byr (t)=r*" (t)— a*'d (1) In practice, a maximum number of iterations and an acceptable

small residue energy comparcd to the data cnergy are used as stopping criteria to the algorithm.

After X iterations, the decomposcd signal is given by
K .
()= a*dy, )+ () (31)
k=1

For damage quantification, both simulations and experiments were conducted to obtain the
response of a 16 ply 0/90 Gr/Ep composite plate with surfacc bonded actuators subjected to
forced excitation. The investigated damages are 1.5cmxSem, 3cmxScm and 4.ScmxScm

delaminations, introduced at different interfaces from the midplane (Fig.17).
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Fig.17. Experimental Sctup with Stmcmrél Dimensions and Interfaces
In the first sct of cxperiments, a 4.5 cycle tone burst signal with a central frequency of § KHz,
was used as thc cxcitation signal, sampled at 1MHz. The objective is to quantify the

dclamination, by decomposing the disturbed signal in terms of wave-bascd dictionary elements

20




and time-of-flight analysis of these individual components to determine the location and size of
delamination, The basic atom of the MPD is a Gaussian c¢nveloped chirped sinusoid and the
dictionary consists of elements which are the time-scaled, time-shifted and amplitudec modulated
version of the basic atom. This atom was chosen because it satisfies the Lamb Wave modes.
Figurc 19 shows a typical example of a disturbed signal overlapped with the modeled signal and
also the extracted components after decomposition. The sum of the individnal components would
represent the modcled data, Figure 20 shows a good correlation in the spectrogram TFR of the

original and modeled data of sensor-1 (Fig.17).

Actstie

" - " PV
) 100 $30 o 2w x0 S ey - L2

Fig.19. Original & Modeled Data Fig.20. TFR of Original & Modeled Data
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The time-of-flight information of thcsc individual components is used to determine the location
and size of the delamination. The triangulation algorithm is based on the expected wave
reflections from the damage and plate cdges as demonstrated in Fig.18. Triangulation of
rectangular delamination means the detection of the edges (B & C; Fig, 17) of the inclusion.
Figurc 21 (a) shows the trend of the error to predict the edges when a same size delamination is

moved from midplane to near surface. Figure 21 (b) shows the error to estimatc the size
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Fig.21. (a); Ervor in ‘Delamination Edge’ Detection (%)
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(b): Error in *Delamination size’ Detection (%) Vs.

Variation of Delamination Interfaccs (Z-location)
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-2™ Interfaccs)
(b) Y-axis: Error, X-axis: Delamination size (%)

delamination bascd on the fuct that delamination is moved from midplane 1o near surface. Figure
21 (¢) shows g similar trend when different sized damages are detected in the 2" interface.

The second set of expcriments was to dcméﬂstrate the applicability of thc MPD to
analyze the vibration attributes of dclamination and the influcnce of ‘through-thickness’ location
and size of the delamination on the structural response under forced cxcitation. A 8 KHz
simusoidal wave packet has been used as the excitation signal. The basic atom is chosen to be a
sinusoidal signal with time duration 0.6us. The MPD was formed by frequcncy shifting this basic
sinusoid from 2 KHz to 40 KHz, with a resolution of 200 Hz. The dictionary elements were also

allowcd to be scaled and shifted in time. The comparison of the percentage energy contribution
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for the extracted frequency components with the dclaminations located at the 2™ interface is
shown in Fig.22. In this context, it is important to note that the larger delamination has
significant superharmonic components whercas the smaller delamination has subharmonic
componcnts with a dominant contribution. A comparative study of the extracted energy
componcnts for different delamination sizes, plotted for the normalized frequency scale, is shown
in Fig. 22. The normalized frequency scale is obtained by dividing the total frequency range by
the cxcitation frequency (f). As seen from Fig.22., under the influence of sinusoidal pulses,
larger delamination toward the midplanc acts as a “closing cruck” thus giving rise to
superharmonic components whereas when the delamination size gets smaller it acts more like a
“partially closed crack” giving nisc to dominant subharmonic components at the output. These
nonlinear effects are morc prominent if the delamination is closer to the midplane. This is
probably becausc in such cases the delamination acts more like a perfect “breathing”
discontinuity, as it interacts with thc excitation signal: Figure 23 shows u similar comparison for
a 4.5cmxScm delamination located at different ply interfaccs. As the same size delamination
moves closer to the surface, the energy cantributi%on of the principle excitationvfrcq'uchy
dccreases when comparcd to delaminations closer to midplanc. Near surface deluminations also
do mnot encouragc the breathing phenomena, Morcover in the wave based techniquc, using
piezoelectric transducers, local changcs are realized while propagating through the structure.
Hence the energy dissipation is much highcr for ncar surface delaminations compared to other
cases. These phenomcna can be well-demonstrated from the extracted frequency components and

their corresponding energy contributions, using the MPD technique,
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(2) (b) (c)

Fig 22, Extracted frequenc,y components for damaged data, X-axis: Normalized frequency scale, Y-
axis: Contribution in extracted energy (%), Frequency of excitation: 8000 He, Damagc details; Fig.,6
(2) 5% Delamination, Fig.6 (b) 10% Delamination, Fig.6 (¢) 15% Delamination, at 2™ interface,

o [y N T ==y » Ry

(a) (b) (©)

Fig.23. Comparison of extracted l‘requency components for damaged data, X-axis: Normalized

frequency scale, Y-axis: Contribution in extracted energy (%) Frequency of excitation: 8000 Hz,

Damage details: 15% Declamination at Fig.7 (a) 2™, Fig.7 (b) 4™ , Fig.7(c) 7™ Interface.
3.2 Matching Pursuit with Adaptive Dictionary

As illustrated carlicr, the matching pursuit decomposition is a me¢thod for the accurate

decomposition of wavcforms into linear expansions of clementary functions (or atoms). The
resulting decomposition reveals the waveform’s structzurc. This information is used to distinguish
signals from healthy and damaged structures. However, il the waveform structure is not well
known, there is a need for the MPD to usc a comprehensive dictionary to guarantee an accurate
decomposition of the waveform. The drawback of the matching pursuit decomposition is that, in
thc decomposition process, it performs an exh_austivc search ovcer a large dictionary of elementary
functions. This scarch is necessary since in most céses the structure of the waveform is not
known, For rcal applications, this results in a large (.:omputational burden and a nced of large

processing power,
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A mcthod to avoid the cxhaustive search ovcr a large dictionary is to identify the aloms
that are suitable for the decomposition of a waveform using Monte Carlo sampling. The Monte
Carlo Sampling Matching Pursuit Decomposition (MCSMPD) produccs a smaller dictionary that
is repeatedly adapted to the signal structurc and that of its residues, before and during the
decomposition proccss. The MPD is then used to decompose the waveform faster, since it makes
use of the smaller dictionary. Furthermore, the di_ctionéry produccd by thc MCSMPD can contain
atoms that are nol restricted in a grid in the timc, frequency and scale plane, as the MPD
dictionary is. This can result {o higher decomposition accuracy.

For the decomposition of a given waveform, a dictionary of time-shifted, frequency-
shifted and scaled Gaussian enveloped chirped sinusoid atoms are chosen so as to satisfy the
Lamb Wavc modcs generated in the structure. Therefore, the state vector to be cstimated has
three partitions, cach representing the aforementioncd atom components. Each of the partitions
I =1,....L evolves according to

P1i=Vate | (32)
with ,i=1,...,1, being thc iteration step of the particle filter and v being a uniformly distributed
noisc term that tukes valucs in a relatively small range, that differs for each of the partitions. In

the initialization subroutine /=1 and the term Yj;_j is sct to zero. Moreover, the noise term

ranges from the minimum to the maximum values for each of the partitions that are the same as
the ones used for the three respective components of the dictionary used in the regular MP

algorithm. This method propagates partitions independently according to a uniform distribution

qu[,i yl,,;_l)for. cach partition/. Where possible, it evaluates their cffectiveness in

characterizing wavcform components individually using a partition weight function that is

described in this section. This mcthod is the independent partition method of propagating
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partitions that removes the limitations imposcd by the increase in the dimensionality of the state

vector. The multitarget state vector is expressed in terms of the state vectors of each target as
_|r,r o7 ]T
Yy =092 YL (33)

where x! denotes the transpose of x.

Note that, as each of the particles of thc particlc filter corrcsponds 1o an atom in the

dictionary, particles are referred as atoms. If applicablc, each proposed partition I of atom ;Ink

18 weighed with a partition weighing function, ’;}' ’l « &, (371"1.) . The function g 1()71"1.) is choscn
b4 2 5

such that it bears information on the specific signal structurc that is represented by the specific
partition. In this application the time shifts may be wcfghed with a function that is proportional to
the instantaneous energy of the signal at cach proposed time. For the frequency shift a weight

function is used that is proportional to the Welch periodogrum. The partition wcight distribution

of each partition 2'1"1. }N 1.nonnalized and an index j,, is samplcd from the resulting distribution
» N=

I YA i
7 and biasht. =h, 1 |
i o 1

!
with replaccment. The resulting selected partition has the value yI”I. = _VI ]
» »!

.. : : / . .
For the partitions that are not weighed and sampled, we sct bl"i =1. The partitions are combined

to form atomsy]’ = {‘i...y;'l.]. In the particle wecight calculation the inner product

f (Y i"’)= <x, d ’I)‘m> is included that is a measure of the similarity of the atom to the waveform.

The weight function also takes into account the proposal densities (/(y” ’yli _1) and the

blasesblni. The proposal densities are uniform and’ with the same variance for each atom.
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Moreover, each of the partitions is proposed indcpendently. Therefore, the resulting proposal
density is equal to HlL q( Y] l.l ¥ i-l) and when evaluated at each of the atoms it produces equal
Lid i

valucs for all atoms. Therefore, this factor may be omitted from the weight function that is

n

. . . Y
evaluated up to proportionality. The resulting weights arc calculated as: w{’ < wlf'_l ——'Z—("—)—
mf(v,)

The distribution of {w;' }n-—-l is normalized and parlicles are resembled from this distribution.

The steps of this algorithm arc described in Table 1.

Table 1 PFMPD algorithm

. Initialization Subroutine
. Update Subroutine- Repeat M times
. MPD iteration
v £ Rpy - Rpy, < .05 And Rp, — Rpi.» >.08
- Updutc Subroutine-Repeat M times
. W Rpy— Rpy; .08

Initialization Subroutine

Update Subroutine-Repent M tinics

GOTO MPD iteration ‘
If Rpy < 0.1 OR k=500 END
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Fig 26. Modeled signal with PFMPD for Scnsor-1 (topj Fig.27. TFR of original and PFMPD
generated and residual (bottom), modeled signal.

Tn this analysis Gaussian enveloped chirped sinusoid has been chosen as the basic atom and the
dictionary consists of elemcnts which are the time-scaled, time-shitted and amplitude modulated
version of the basic atom. For damage quantiﬁcation,j experiments were conducted to obtain the
response of u 16 ply 0/90 Gi/Ep compositc plate with surface bonded actuators subjccted to
forced excitation (Fig, 17). The investigated damages ‘are nolches, saw-cut, drilled holes, impact
and delamination of 4.5cmxScm introduced at the 4th interfaces from the midplane. In this
experiment, a 4.5 cycle tone burst signal with a central frequency of 8 KHz, was used as the
excitation signal, and sampled at 1IMHz. The ability of the PFMPD algorithm to decompose the

samc signals with less computational time and without compromising accuracy is demonstrated
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in this section. The estimated dictionary is composed of 100 atoms whose range is same as those
of the rcgular MPD dictionary. The dictionary is estimated at every particle filter iteration and
adapts to thc original waveform and the residues resulting from the MPD. Specifically, the
initialization subroutinc is uscd in the beginning of the PFMP algorithm, followed by M= 2
applications of the update subroutinc, The MP is used until the fraction of residue Ry, at iteration
1 does not decrease further than 0.05 over one iteratioh step, when M = 2 update subroutines are
used. Moreover, if the fraction of residuc docs not drop more than 0.05 over two successive
MPD iteration steps, thc initialization subroutine is used, followed again by M = 2 applications
of the update subroutine. The itcrations are terminated when either the fraction of residue drops
below 0.1 or the maximum time of itcrations 1 = 500 is reached. Figure 24 and 26 shows the
same waveform overlapped with the modeled data and also the residue components after
dccomposition resulting from the MPD and PFMPD respectively. Figure 27 also shows a good

corrclation in the spectrogram TFR of the original and modeled data of sensor-1.

Figurc 28 Fraction of residual Vs (jomputational expense
In Figure 28, it is shown using 50 Monte Carlo simulations, that the PFMPD algorithm
- with a reduced size dictionary decomposes the given waveform with a fraction of residue
comparable to the MPD with a non-adaptive dictionary, but with less computational time. This is
due to the fact that thc PEMPD, although uniformly proposing atom locations within the time-

frequency domain, it appropriately wcighs the atoms using the structural information of the

29




wavcform to cventually select those atoms that better match the waveform characteristics,
Therefore, the PEMPD is cspceially uscful in locating time-frequency locations of the waveform
even if those are found sparscly in the time-frequency domain. In Table 2, the damage locations

ure predicted from experimental data of individual sensors using both MPD and also PFMPD

algorithms,
Table 2 Predicted damage information
Damage Type  Ongmal locaton (m) Matching Eursuit MPD with Parhcle
D : Of damage Dccofnposttion Filter
mlflnz?csrl,ons From free end Esnmatcf Estimated Estumated LEstunated
location location location  location
m () () (m)
Sensor-1 Sensor-2 Sensor-1  Sensor-2
Reading Reading Reading  Reading
Dnlled holes 0.075-0.085 0. 14714'4: 0.13565 0.151757 0.061842
(0.001 dia) 0.101014  0.149439 0.137918 0.071068
Delamination  0.055-0.10 0.119466 0094133 0151757 0.061842
(0.045x0.05) 0.087175  0.098746 0.147144 0.066455
© 0112585 0.124079  0.095681
Notch 0.07-0.09 0124079 0.112585 0.137918  0.061842
(0.02) 70 0.117198 0.133305 0.066455
0.144876 0.071068
D.1148 53 0030294 0.114853 0.075681
Saw-cut 0.085 0.101014  0.084907 0.101014 0.080294
(0.02) 0.087175 0.082562 0.080294

The reason that sensor-2 provides a better informationion the damage location for both MPD and
PFMPD, is duc to the fact that it experiences a morc sijgniﬁcant change in the received wavelorm
for damaged and healthy cases when compared to the other sensor. Moreover it is important to
note that for certain damages there arc multiple entries of predicted damage locations undcr cach
sensor dépending on reflection components. From the results, it can be observed that the

locations of thc damages estimated by thc PFMPD are closer to the fruc values that those
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obtained by thc MPD. This is because the PFMPD is able to propose atoms in continuous
locations on the time frequency planc, in contrast to the MPD that is confined only on discrete

points. This enablcs the atoms to more closely represent the waveform at hand.
4. Dctection and Classification of Damage Signatures using Support Vectors Machines

The basic idca of classification is to assign any previously unscen pattern of a new point
to the predcefined class with a closer pattern. There are several techniques to characterize the
similarity measures of any given pattern. One way :to achicve this is to construct a decision
boundary based on the training datasct or the predefined classes and thereafier check the

oricntation of the given test point with respect to the reference boundary.

An automated method of classifying scnsor signals collected from different types of
damage coupons to enable the detection and diagnosis of damage on composite structurcs has
been described using Support Vector Machines (SVMs), which arc an advanced classification
method from the ficld of machine learning. Figure 29 represents a typical architecture of Support
Vector Machincs, The use of a special typec of support vector machine known as the one-class
SVMs has been demonstrated as a pattern recognition tool for automatic anomaly detection and

diagnosis on structurcs made from Carbon Fiber Reinforced Composite (CFRC) materials.
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Figure 29 Basic architecture of Support Vector Machines (SVMs)

4.1 Onc-Class SVMs based Classifier
The Support Vector Machine (SVM) provides non-lincar approximations by mapping the
input vectors into high dimensional feature spaccs where a separating hyperplane is constructed.
The idea bchind this method is to map the n- dimensbnal vectors x of the input space X into a
high- dimensional (possibly infinitc dimensional) fcatﬁre space. In this research, the input data is
mapped into an infinite-dimensional feature space using a Radial Basis Function (RBF) kernel
(Eq. 34). The dot product in the fcaturc map (¢ ) is implicitly computed by evaluating the simple

kernel (K)), thus avoiding the explicit calculation of the featurc map.
2
"y - “x' _.xj u e ¥ %
A(xi=xj)=<¢(xi)a¢(xj)>=ex "_‘2‘;5““ : (34)

Onc clags SYM, proposed by Schélkopf et al, belongs to a unique group of the SVM family
where the training input vectors belong 1o one-class, .i.c., the class representative of normal or

nominal system behavior. The objective is to map the data into the feature space corresponding
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to the kemcl and therecaller constructing the optimal hyperplane to separate the featured vectors

from the origin with maximum margin. All nominal points lie ‘above’ the optimal hyperplane,

and it is assumcd that all future nominal behavior will lie in the same region. The algorithm

rctums a decision function f{x) that evaluales for every new data point (x) to determine which

side of the hyperplane it falls on in fecature space. Figure 2 represents the schematic overview of

the one-class SVM and its paramcters. The maximum separation between the origin and the data

point is obtuined by solving the quadratic problem (Eq. 35). When this algorithm is applied to

new data, the decision function is used to determine whether or not the data points lic above or

below the hyperplane. Points that fall above the plane (away from the origin) arc called, nominal,

and other points are called anomalous.

R’Ra

Figure 30 Hlustration of higher dimensional mapping for

liner separation.
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Figure 31 Geometric interpretation of optimal
hyperplane construction for two-dimensional cnse.
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where v represents the upper bound on the fraction of the training error, & is the non-zcro slack
variable and p being the offset (Fig. 31). The targct function in the dual problem can be written

as,

1
min— ) a,o,K(x,,x,) (36)
o 2%: (bt (/ J

. 1 _
subjectto 0 <, < -i; ,Zai =1

where a; rcpresents the Lagrange’s multiplict. The parameter p can be recovered for values of
«z; that satisfies the given constraints with cquality sign in Eq. (38) and the values of g(x;) for
the corrcsponding non-zero Lagrange’s multipliers (a;) arc termed as support vectors. The

obtained , and @(x;) must satisfy the equation for the offset, expressed as,
p=3 K %,x) @7
J

The decision function for a given test vector g(y) can be expressed in terms of the kernel as,
- 1 |
/)= sign(Z @ K(x,%,) - p) (38)
[ad ]

For the training data, the decision function takes the value of +1 capturing most of the data
points and —1 clsewhere. Once the dual problem (Eq. 36) is solved 1o obtain the support vectors,
the optimal hyperplane is constructed in the feature space. For a new test point, the dccision

function evaluates which sidc of the hyperplane the given test point falls into, using Eq. 38.
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4.2 One-Class SVMs: Detecting Unusual Patterns

In structural health monitoring sensor signals are analyzed to locate and estimate the
severity of defect, It is an established fact that the prescnce of damage introduces additional
nonlincaritics in the medium. Presencc of damage introduces these attributes in terms of
undesired attenuation, reflection components, multiple harmonics and high frequency burst
signals. In this section, the applicability of One-Class SVMs to dcteet unusual patterns in signals
has been 1illustrated using two test cases. Figure 32 reprcsents a simulated sensor signal for a
healthy structure. Tﬁc presence of the damage has been represented by introducing additional
attenuation, rcflections, multiple harmonic components and high frequency burst, superimposed

on the resultant wave. In addition a random noisc (w()) has been introduced to takc into account

environmental and experimental uncertainties. Here w{n)= v .X % random(N,1) is a random

variablc of N realizations and vanance X .

.
"[
g . & e . e
[T .

Figurc 32 Sensor signal (healthy). Figure 33 Signal with reflections. Figure 34 Signal with high frequency burst.
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In Fig. (33) and (34), the signal rcpresents the sersor response of two damage cases with
additional reflection compouents and high frequency Eburst wavc respectively. In both the cases
two additional components arc introduced at 354" and'585™ sample points. The preprocessing of
the simulated signal has been done using time-embc:ddcd method, In the current analysis, for
each time domain data (of 2000 sample points), an 11dimensional statc vcctor is obtained using
timc delay 7 =1 and embcdding dimension N =11. The Onc-Class SVMs has been trained with

the 11 dimensional input vectors from healthy samples and based on the training parameters; the




algorithm constructs the optimal hyperplane. Thereaftcr the 11 dimensional input vectors
corresponding to each damaged case have been tested and the corresponding labels of each data
points are chécked. It has been obscrved that majority of the unusual patterns in the signal from
the defective cases has been labeled as unseen data or outliers.

Figire (35) represents the plot corresponding to the analysis for the damaged casc with
additional reflections. The plots corresponding to Fig. (35-a) and (35-b) rcpresents the vesultant
sensor signal from damaged state and the reflectcd components from the damage respectively.
The predicted outliers are shown as peaks in Fig. 35((;). Figure (36) represents a similar analysis
for the damage case with high frequency burst signals. In this context it is important to note that
apart from the true predictions, thc outcome shows the presence of some false pcaks which is
basically results due to the presence of the random noise and the naturc of the input features
provided to the dctcction algorithm. The performance of the detection system 1o predicl the
presence of the additional reflections componcnfs has been evaluated with different levels of
noise. The confusion matrix has been constructed based on the outcome of the Ongc Class SVMs

algorithm, Figure (37) shows the trend of probability of false alarm with different noise level.

1 1
£ el ey L e

-] &
—
>r
&
=
Er Gyt okl
oy ¥
<~ S 5 2
>

. " N \ P : .
W 00 0> ) 2000 1 3ly 7] o W 709 300 1400 1440 10 )

Pealacted Dt wy Puack By Dunet n ey,
123 s 3

L) 20 9 ) o Ferd
Bargi bransz - Pwigie Ponty
¥
> 1
o A g O R 111 3 113 I 1 X
o f A e
Eee an . . b . . T i S .
L T R T ) i T T N T L
M ronrs Tl sy

Figurc 35 Predicted outliers (additional reflections). Figure 36 Predicted outlicrs (high frequency
© burst components).
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Figure 37 Probability of False Alarm Vs, Noise level Figurc 38 Probability of Detection Vs Noise level.

Figure (38) shows a similar plot showing the trend of ;E'wobabi.l.ity of detection with different noise
level. A carcful observation reveals that with increasing noise level, the probability of false alarm
tends to incrcase whereas the probahility of dctections maintains a steady decay as expected.
Howecver the sharp fall in Fig. (38) indicates that the probability of detection gets hcavily
influenced with increasing noisc level and thas deteriorates the accuracy of the detcction system.

4.3 Classifying Damage Patterns in Integrated Diagnostics

In this section, the use of SVMs to investigale the vibration signaturcs of damages in composites
has been demonstrated under various test applications. The normal (zero-state) and abnormal
attributes arc extracted trom the measured data of a structure and are further analyzed to
characterize various states of the systern. Once the diag;mostic proccdure is trained, subsequent
lest data can bc examined to see if thc fcatures deviated from the normal behavior have
significant similarity with certain abnormal attributesé of the system. The goal is lo exlract and
classify the signature characteristics duc to the presence of various types of dcfects in composite

structures so that the status of the structure can be asccttained.

For damage quantification, experiments werce conducted to obtain the response of a 16 ply
0/90 Graphite/Epoxy composite plate with surface bonded actuators subjected to [lorced

excitation as shown in Fig. 17. The investigated damages (4 categories) are nolches, saw-cut,
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drilled holes and delamination of 4.5cmxSem introduced at the 4% interfaces from the midplane.
The fifth set of data belongs to the healthy group which is uscd as a reference data for
comparison. In the first set of cxperiments, a 4.5 cycle tone burst signal with a central frequency
of 8 KIz, was uscd as the excitation signal, and sampled at 100 KHz. To take into account the
matcrial variability, sensor signals were collected Frqm 2 identical coupons of each group, for
example 4 sets of measurements conducted on healthy specimen. A minimum of 10 observations
were fetched from each transducer across each tcst bed under the same operating condition to
takc into account the experimental uncertaintics associated with data acquisition. For
classification data, the dataset consists of 20 vectors from each sensor for each catcgory of
defects. The objective is to classify the sensor signals collected from different test beds o assist
in the diagnosis of composite structures be based on the information from the neighboring

sensors (scnsor-1 and sensor-2 as shown in Fig, 62).

4.4 Time Embedding Approach

The preprocessing has been donc using Oné-class SVMs along with time-embedded
mcthod. The applicability of the time-embedding méthod along with the Onc-class SVMs to
detect the presence of surprising features in structural ;iata has been demonstrated in the previous
sections. Here the classification analysis was conducted for a dataset collected from 2 identical
coupons of cach group to take into account the experimental and material uncertainties associated
with data acquisition and manufacture respectively. Tn this research, for each time domain data |
(of 800 sumple points), a 11dimensional statc vector is obtained using 7 =1 andN =11, A
minimum of 20 vectors from cach sensor for each category of defects were selected from a pool
of 40 vectors and the selection was based on the two datascts having the closest distribution. In

this cffort, a total of total 790 X 4400 dimensional matriccs (S) corresponding to S defect




conditions has been used using time-cmbedded technique. As mentioned, 50% of the

observations related to cach condilion are used as the training samples and the others as the

testing samples.

Table 3 and 4 presents the ountcomes (R ) using SVMs on the damage classification for

sensor-1 and sensor-2 respectively, using a RBF kernel. HereR, represents the correct

classification rate of a dataset from any j* category (represents cach column) when trained with

a datasct from ;" category (represents each row). In the current analysis, the v is set to 0.05 and
the optimal ¢ is being calculated for cach traming sct. Once the matrix (R ) is calculated, the

selection criteria that two groups of signals belong to the same class is trae when R; and R,
closely matches with higher classification rate i.e. R, = R,. When One-Class SVMs is trained

with j* category datasct, most ol the j* category feature points lic on onc side of the hyperplanc

but majority of the /" category feature points (from test dataset) may or may not lic on the same
side of the hyperplane. In casc the category feature points don’t lie on the same side, then they
are from different classcs. However if they do, then 1t would be necessary to cross check if they
both lie on the same sidc of the hyperplane, when the SVM is trained with calegory datasct
instead. The geometrical interpretation for the selectkfm criteria means that thc two hyperplancs
constructed individually by " category and j* category dataset has to be very similar such that
majority feature points from both the catcgories ﬁe on the same side irrespective of the

hyperplanc constructed. TIn the present analysis, the selection criteria is set as

"Ro' -R; " <0.05(1 - }/), which means that to belong to the same class the absolute difference of

the correct classification rate obtained from two sets of data must be Jess than or equal to 5% of

the maximum classification rate, Once the R matrix is obtained, a new matnix Q; is formed for

39




the £™ sensor, such that the following criteria hold,

I Ry —R i <0.05(1-y)
k k
Else (39)
ok - Qﬁ =0

For each scnsor-1 (s1) and sensor-2 (s2), the Q‘-',f is evaluated and finally compared to obtain M ,
where

M=0"1 0% (40)

The matrix (M ) reprcsents the final outcome of the classifier based on the mgtual
information of thc_ scnsor pairs and can infer that i” catcgory and j” category dataset belong to
the same group, ifM; = M, =1. The One-~class SVMs classifiers successfully classified all the
defect states, and are shown in Tablc S. The proposed technique provides a One-Class based
classification tcchnique using feature vectors extracted applying the time-embedding method
directly to the sensor response but not the difference output. It has been demonsirated that the

developcd analysis based on mutual information from multiple sensor is an effective way of

minimizing thc possibility of false clasgification, when coupled with a selection criterion.
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Table 3: Clussification ratc (R, matrix) for sensor-

v —-0.05

o

TRCY
(test)

TRC2
(tcst)

TRC3
(test))

TRC4
(test)

TRCS
(test)

TECI
(test)

TEC2
(test)

TEC3
(test)

TEC4
(test)

TECS
(test)

0.055

TRC1
{train)

0.9544

0.6873

0.8683

0.6227

0.8101

0.7620

0.6278

0.8075

0.4949

0.7202

0.16

TRC2
(train)

0.9594

0.9506

0.8468

0.7860

0.8202

0.9177

0.7683

0.8696

0.7911

0.8202

0.105

TRC3
(train)

0.9164

0.7189

0.9506

0.6519

0.8278

0.8797

0.7012

0.8594

0.6443

0.8240

0.08

TRC4
(train)

0.8468

0.8075

0.8632

0.9531

0.8215

0.9025

0.7025

(0.8455

0.6734

0.8139

0.09

TRCS
(train)

0.8797

0.6974

0.9050

0.6607

0.9557

0.8822

0.7025

0.9139

0.5962

0.9038

0.06

TEC1
(train)

0.8012

0.6506

0.8506

0.5379

0.7569

0.9544

0.6924

0.8670

0.6468

0.8278

0.155

TEC2
(train)

0.9126

0.7620

0.8670

0.7924

0.8189

0.9594

0.9531

0.8455

0.7860

0.8215

0.115

TEC3
(train)

0.9038

0.7202

0.8835

0.6835

0.8379

0.9405

0.7303

0.9519

0.6658

0.8303

0.075

TEC4
(train)

0.8822

0.6974

0.8405

0.6645

0.8025

0.8519

0.8063

0.8519

0.9544

0.8050

0.085

TECS
(Lrain)

0.8278

0.6873

0.9025

0.5784

0.9038

0.8721

0.6797

0.8936

0.6177

0.9544
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Table 4: Classification rate (R, matrix) for sensor-2

v =0.05 TRCI | TRC2 | TRC3 | TRC4 | TRC5 | TEC1 { TEC2 | TEC3 | TEC4 | TECS
o (tcst) | (test) | (test)) i (test) | (test) | (test) | (tcst) } (test) | (test) | (test)
0.115 TR?]. 0.951910.,9291]0.89490.7936 1 0.920210.924010.9113{0.8949}0.80120.9240
0.08 g'trRagg 0.6658 10.950610.621510.7151 { 0.6683 10.6379} 0.8620;0.6924 | 0.6582 { 0.6063
0.1 '(IE;:IC]'JB) 0.839210.86450.953110.7164 0.8569 0.8341{0.886010.839210.673410.8506
0.1 %E;agg 0.883510.912610.8075 0.9544 10,8848 10.7987]0.907510.7949{0.73790.8557
0.12 '(]Eri:gl.‘g 0.8493{0.8873{0.8670 (),7367 0.9506 0.887310.8873;0.8746]0.7215{0.8911
0.115 (ltl;?lcnl) 0.917710.9063 | 0.8962 | 0.8139 0.9240 0.953110.922710.8949:0,7974 ;0.9202
0.08 Sl“h}-;gz) 0.63530.8594 ] 0.6886}0.6557 | 0.6088 | 0.659410,955710.6139{0.7126 } 0.6645
0.095 SIt‘g(lin?a) 0.82400.8746 | 0.834110.6582 | 0.8544 | 0.8519 | 0.8670 0.950610.7101 { 0.8493
0.11 %‘lgg 0.8139]0.9088 O.7§62 0.758210.8721 {0.898710.9202{0.8215:0.9557]0.8848
0.12 EIEI].EanS: 0.841710.8873:0.87340.7265{0.8911 1 0.8683 0.-8873 0.864510,734110.9531
tram
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Table 5: Qutcome of the classificr

(case-3)
Nu=0,95 TRC1 | TRC2 | TRC3 | TRC4 | TRC5 | TEC1 | TEC2 | TEC3 | TEC4 | TECS
(lesl) | (test) | (tcst)) | (test) | (test) | (test) | (test) | (test) | (test) | (test)

0.07 | TRC1 1 0 0 0 0 1 0 0 0 0
(train) ‘

0.06 | TRC2 0 1 0 0 0 0 1 0 0 0
(train)

0.085] TRC3 0 0 1 0 0 0 0 1 0 0
(train) ‘

0.07 | TRC4 0 0 0 1 0 0 0 0 1 0

. (brain)

0.08| TRCS 0 0 0 0 1 0 0 0 0 i
(Lram)

0.075| TEC1 1 0 0 0 0 1 0 0 0 0
(train)

0.045] TEC2 0 1 0 0 0 0 1 0 0 0
(train)

0.05| TEC3 0 0 1 0 0 0 0 1 0 0
(train)

0.075; TEC4 0 0 0 1 0: 0 0 0 1 0
(train)

0.08 | TECS 0 0 0 0 1 0 0 0 0 1
(train) '
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Description of Rescarch Conducted

The thermal wave imaging system (EcoTherm) has been used in the ongoing research
activities related to Structural Health Monitoring (SHM) of heterogeneous structural
systcms. The cquipment has been used as a module intcgrated with the existing
generalized framework for the characterization, detection and quaniification of damage
such as delaminabon in composite structures. The cxisting framework comprises
cxperimental proccdurcs, along with developed numerical techniques to characterize
damage in laminated compositcs, using surface bonded and embedded piczoelectric
scnsors.  Experimental techniques comprise the use of non-contact air coupled
ultrasonics, laser vibrometry and thermography. The EchoTherm system uses a pulse
ccho thermal wave to capture 3-ID images in real time. A heat pulse is gencrated by a set
of flash lamps and launched on the surface of the composite laminated coupons with
embedded delaminations. Once the thermal waves start propagating through the interior
plies of the lanmmated slructure, the presence of delects such as delaminations would
causc the propagating thermal wave to reflect back because of the difference in the media
properties. The system consists of an infra-red camera and associated clectronics, which
1s used to form and store the images of the subsurface defects. In the ongoing rescarch,
the thermography system has been used to investigate secded delamination in composite

beams and plates.

A hicrarchical wave based approach has been developed for further quantification of
and classification ol delaminations patterns. In the current ctfort, a Matching Pursuit

Decomposition (MPD) algorithm has been developed for detection and localization of




sceded delamination in compositc structures. This has been accomplished by
decomposing the signal in teoms of wave-based dictionary elements and finally utilizing
the time-of-flight information of these individual decomposed componcnts of transient
datasets to determine the location and sizc of the delamination. The performance of the
developed diagnostic system with embedded sensing architccturc for health monitoring of
laminated composite structurcs has been evaluated against the predictions of the thermal

wave imaging system by validating the detection and localization of the delaminations.

Status of Effort

Experiments have been conducled to obtain the response of a compositc platc with
surfacc bonded actuators subjccted to sinusoidal loading. A 16 ply graphite/epoxy
cantilever plate with 0/90 stacking sequence is used. The plate dimensions are: 30.5cm
long, 5.1cm widc, 0.00218 cm ply thickness. Thunder PZTs, bondced to the upper surfuce
of the plate, are used as sensors and actuators. Figure | demonstrates the placement of

sensors and the actuator.
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Figure 1 Experimental Setup with Structural Dimensions and Interfaces of composite beam.
The damage is represented by delamination of various sizes, introduced at different

interfaces from the midplane as shown in Fig. 1. The inveshgated damages are of 1.5¢m x




S5em, 3cm x Sem and 4.5cm x 5cm delaminations as shown in Fig. 2. In the current set of
experiments, a 4.5 cycle tone burst signal with a central frequency of 8 KHz, was used as
the excitation signal, sampled at IMHz. The objective is to quantify thc delamination, by
decomposing the disturbed signal in terms of wavc-based dictionary elements and tinme-

of-flight analysis of these individual components to determine the location und size of

delamination.
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Figure 2 Compozitc coupons with delaminations,
The time-of-flight information of these individual components is uscd to determine
the Jocation and size of the delumination. The triangulation algorithm is based on the
expected wave reflections from the damage and plate cdges as demonstrated in Fig. 3 and

Fig. 4 for sensor-1 and sensor-2 respectively.
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Iigure 3 Wave Reflections for Sensor-1. Figure 4 Wave Reflections for Scnsor-2.

Triangulation of through-width rectangular delamination implics the detection of the
cdges (B & C; Fig. 3-4) of the inclusion. The nbove figure represents the c-scan of the
sample plate with a seeded delamination introduced at 4™ interface from the mid-planc.
Tablc 1 rcpresents the cstimated values, based on the first 5 reflections, for the
delamination edges when different sizes of dclaminations are moved from midplane to
pear surface. The values are obtained by applying‘lhe triangulation algorithm on the

decomposcd componcents obtained from the MPD model.

Table 1 MPD oultput based on 5 reflections

Delamination Delamination Actual Actusl Predicted Predicted
Size Location ®) ©) (B) ©
4.5¢rnxSem I, 0.065 0.116 0.063 0.116
4.5emxSem 1, 0.065 0.116 0.065 0.118
4.5cmxScm I 0.065 0.116 0.067 0.123
3.0cmxScm I 0.073 0.103 0.081 0.127
1.5cmx5cm Ta 0.080 0.097 0.100 0.121

Figure 5-6 represents the C-scan images of some of the test sumples used for
quantification purpose (Fig.2). The existing ultrasonic testing equipment (SONDA 007
CX) has been used to automatically scan thc tcst samples for the dctection and
measurement in the atlenuation domain to characterize the defect and to analyze the

interfaces for possible cxisting damage, Figure (7-8) represents the thermographic images




of some of the same test samples used for quantification purpose as shown in Fig. 5-6.
The existing EcoTherm system has been used to capture the thermal images using a pulse
of heat, generated by a set of flash lamps and launched on the surface of the test sample
that 15 being investigated. The c-scan image and thermographic image has been used for
validating the existencc of dcfects, including the damage severity and finally compared

with these results with those obtained using wave based techniqucs (table 1).

Figure 7 Thermogruphic image of composile coupons with delomination (4th interface).




Figure 8 Thermugraphic image of composite cotpons with delamination (4th interface).




